Original Paper

Syntheses and Properties of MgAlB₁₄-type Compounds from Al-self Flux

Shigeru OKADA^{1,*}, Toetsu SHISHIDO², Takao MORI³, Kiyokata IIZUMI⁴, Kunio KUDOU⁵, Kazuo NAKAJIMA²

Al-セルフフラックスから MgAlB₁₄-タイプ化合物の合成と性質

岡田 繁^{1,*},宍戸統悦²,森 孝雄³,飯泉清賢⁴,工藤邦男⁵,中嶋一雄²

Received April 2, 2007; E-mail: sokada@kokushikan.ac.jp

LEAlB₁₄ (orthorhombic, *Imam*) (LE = Li, Mg) crystals were grown using metal salts (Li₂CO₃, LiF, LiI, MgO, MgF₂, MgI₂) and crystalline boron from a high-temperature aluminium metal flux. The growth conditions for growing LEAlB₁₄ were established using the starting mixtures of B/LE = 2.0 (atomic ratio), and Al metal was added to each mixture at a mass ratio of 1:15-20. LEAlB₁₄ crystals from the Al-self flux using metal salts could be obtained from all the different salts. The maximum dimensions of LiAlB₁₄ and MgAlB₁₄ crystals were approximately 18 mm and 12 mm respectively for the crystals obtained from LiF and MgF₂. The unit-cell parameters of as-grown LEAlB₁₄ are as follows: for LiAlB₁₄ obtained from LiF, a = 0.5846(2) nm, b = 0.8144(2) nm, c = 1.0355(3) nm, V = 0.4930(2) nm³: for MgAlB₁₄ obtained from MgF₂, a = 0.5845(2) nm, b = 0.8114(2) nm, c = 1.0330(4) nm, v = 0.4899(3) nm³. Microhardness, oxidation resistance and magnetic susceptibility of these materials are described in detail.

Key Words: LiAlB₁₄, MgAlB₁₄, Metal Salts, Vickers Microhardness, Magnetic Susceptibility

1. Introduction

Higher borides consisting of B₁₂ icosahedra are of great interest because of their remarkable physical and chemical properties[1], which in many cases are of potential interest for applications of thermoelectric, photodetectors and neutron shelters[2]. The boronrich compounds of Li or Mg and Al have been reported as MgAlB₁₄-type compounds (orthorhombic, *Imam*)[1,3]. structure of MgAlB₁₄ type is made up to four B₁₂ icosahedra and eight single boron atoms per unit cell. The icosahedra are centered at 0, 0, 0; 1/2, 1/2, 0; 0, 0, 1/2 and 1/2, 1/2, 1/2, and were oriented so as to have one their mirror planes parallel to the (100) plane. The Al and LE (Li or Mg) atoms are accommodated in the large holes outside the icosahedra. Figure 1 shows a perspective view of the MgAlB₁₄-type structure where the boron icosahedron unit is depicted as a cluster. The largest and the second largest atoms correspond to the Li or Mg and Al atoms, respectively. However, there is very little information about the physical and chemical properties of MgAlB₁₄-type compounds.

Recently, we successfully prepared single crystal of LiAlB $_{14}$ from the aluminium-self flux using Li $_2$ B $_4$ O $_7$ or Li metal and boron powder as starting materials[4]. Another, crystal of MgAlB $_{14}$ is obtained by adding relatively large amount of Mg metal in high

temperature Al flux[3]. However, until now there have been no reports on the growth of LEAlB₁₄ (LE = Li, Mg) crystals from Alself metal flux using metal salts (Li₂CO₃, LiF, LiI, MgO, MgF₂, MgI₂), instead of LE metal, and boron powder as starting materials

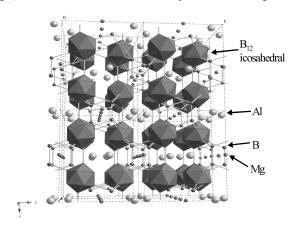


Fig.1 The crystal structure of MgAlB $_{14}$ -type compound.

¹Faculty of Science and Engineering, Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515

²Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577

³National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044

⁴Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297

⁵Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686

¹国士舘大学理工学部,154-8515 東京都世田谷区世田谷 4-28-1

²東北大学金属材料研究所,980-8577 仙台市青葉区片平2-1-1

³物質・材料研究機構, 305-0044 つくば市並木 1-1

⁴東京工芸大学工学部,243-0297神奈川県厚木市飯山1583

⁵神奈川大学工学部,221-8686横浜市神奈川区六角橋 3-27-1

by slowly cooling under an argon atmosphere.

In this paper, we report the experimental conditions for growing relatively large crystals of LEAlB₁₄ (LE = Li, Mg) from metal salts (Li₂CO₃, LiF, LiI, MgO, MgF₂, MgI₂), instead of LE metals, and boron powder as starting materials. The metal salts are more suitable as the source of LE elements than LE metals that have high vapor pressure, because of relatively high chemical stability in air atmosphere, and low reactivity for an alumina crucible at high temperature. The present study of LEAlB₁₄ crystals growth is the first to successfully utilize metal salts (Li₂CO₃, LiF, LiI, MgO, MgF₂, MgI₂) and boron powders as starting materials in Al self-flux. The size, morphology and crystallographic data of the crystals were determined. Vickers microhardness at room temperature, oxidation resistance heated in air up to 1473 K and magnetic susceptibility measurements at low temperatures were investigated.

2. Experimental details

2.1 Sample syntheses

The reagents used to prepare the samples were metal salts (Li₂CO₃ (purity 99 %), LiF (purity 99.9 %), LiI (purity 99.9 %), MgO (purity 99.9 %), MgF₂ (purity 99 %), MgI₂ (purity 99.9 %)), crystalline boron powders (purity 99 %) and aluminium metal chips (purity 99.99 %). The growth conditions for growing LEAlB₁₄ were established using the starting mixtures of B/LE = 2.0 (atomic ratio), and Al metal was added to each mixture at a mass ratio of 1:15-20. The mixture of starting materials was heated at a rate of 300 K·h⁻¹ and held at soaking temperature 1673 K for soaking time 5 h, and then cooled to room temperature at a rate of 50 K·h⁻¹. The ingot was removed by breaking the crucible. The crystals were separated by dissolving excess Al in dilute hydrochloric acid (6N-HCl). The obtained crystals were removed, rinsed, and dried. Figure 2 shows the flow chart of the syntheses of the crystals. LEAIB₁₄ crystals were selected under a stereomicroscope for the measurements of chemical analyses, X-ray diffraction, microhardness, oxidation resistance and magnetic susceptibility. Phase analysis and determination of unit-cell parameters were carried out by a powder X-ray diffractometer (XRD, Rigaku, RINT). The morphology, size and the impurity content of the crystals were observed by a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray detector (EDX, Horiba, EMAX-2770), and the electron probe microanalysis (EPMA, JEOL,

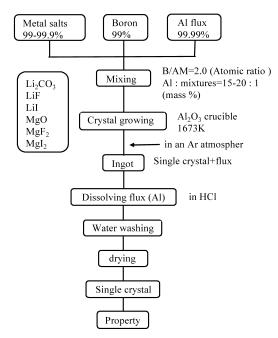


Fig.2 Flow chart for experimental condition of LEAlB $_{14}$ (LE = Li, Mg) crystals.

JSM-35C).

2.2 Characterization

As-grown LEAlB₁₄ crystals were measured using a Vickers diamond indenter at room temperature. A load of 2.94 N was applied for 15 s and seven impressions were recorded for each sample. The obtained values were averaged and the experimental error was estimated. Pulverized samples of approximately 25 mg were heated between room temperature and 1473 K in air at a rate of $10~{\rm K\cdot min^{-1}}$ by TG-DTA analyses[5]. Magnetic susceptibility of pulverized compounds was measured by using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design MPMS) in the temperature range of 2 to 300 K, with a palladium sample used as a standard.

3. Results and Discussion

The results of the phase analysis are listed in Table 1. As seen from Table 1, four types of structure, namely LEAlB₁₄, AlB₂, α -AlB₁₂ and β -AlB₁₂-type compound were identified, while crystals of γ -AlB₁₂, MgAlB₂₂, and binary compounds of magnesium-boron and lithium-boron[1,6,7] were not detected by XRD. For the Alself flux growth using metal salts LEAlB₁₄ crystals could be obtained from all the different salts. However, the other phases are always obtained as AlB₂, α -AlB₁₂ and β -AlB₁₂-type compounds. We find that the large size of LiAlB₁₄ and MgAlB₁₄ crystals, with maximum dimensions of approximately 18 mm and 12 mm, are obtained when LiF and MgF₂ are used as the starting materials. But the LEAlB₁₄ crystals prepared with the other metal salts (Li₂CO₃, LiI, MgO, MgI₂) had maximum dimensions of 50-150 μ m, and not always sufficiently large for some property measurements.

Table 1 Typical growth conditions of LEAlB $_{14}$ (LE = Li or Mg) crystals.

Metal salts	Soaking temp. (K)	Soaking time (h)	Atomic ratios (B/LE=n)	Phases identified
Li ₂ CO ₃	1673	5	2.0	LiAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type
LiF	1673	5	2.0	LiAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type
LiI	1673	5	2.0	LiAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type
MgO	1673	5	2.0	MgAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type
MgF_2	1673	5	2.0	MgAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type
MgI_2	1673	5	2.0	MgAlB ₁₄ , AlB ₂ , α-AlB ₁₂ , β-AlB ₁₂ -type

Therefore, the metal salts of Li_2CO_3 , Lil, MgO, and MgI₂ probably do not have optimum solubility in the aluminium flux at high temperature. The MgAlB₁₄ and LiAlB₁₄ crystals obtained have well-developed {001} and {010} faces, and were black (for MgAlB₁₄) and reddish black (for LiAlB₁₄) with metallic luster. Single crystals having the typical crystal form are shown in Fig. 3 (MgAlB₁₄ (A) (for MgF₂) and LiAlB₁₄ (B) (for LiF)). The LiAlB₁₄ crystals were enclosed by two large {100} faces, two large {010} faces and two large {001} faces. Although the impurity content of the LEAlB₁₄ crystals was not analyzed chemically, the EDX established the occurrence of traces of silicon and iron while aluminium was found to lie below the detection limit (< 0.05 %). Consequently the solid solubility of aluminium in LEAlB₁₄ is

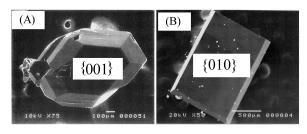


Fig.3 SEM photographs of $MgAlB_{14}$ (A) (for MgF_2) and $LiAlB_{14}$ (B) (for LiF) crystals.

extremely small. No evidence was obtained for the presence of oxygen or fluorine-containing phases in the crystals, as concluded from EDX and EPMA analyses of as-grown crystals.

Unit-cell parameters for LEAlB₁₄ were collected in Table 2. The unit-cell parameters of these compounds are in relatively good agreement with data published previously[4,7]. The values of unit-cell parameters are strong resemblance to ionic radii (Li (+1), 0.076 nm; Mg (+2), 0.072 nm) having coordination number 6[8].

Table 2 Unit-cell parameters of LEAIB $_{14}$ (LE = Li or Mg) crystals.

Metal	Compounds	Unit-	cell parameters	(nm)	V (nm³)	References
salts	Compounds	a	b	с	v (IIIII-)	References
LiF	LiAlB ₁₄	0.5846(2)	0.8144(2)	1.0355(3)	0.4930(2)	This work
Li*	$LiAlB_{14}$	0.58469(9)	0.81429(8)	1.03542(6)	0.49297(8)	[4]
MgF_2	MgAlB ₁₄	0.5845(2)	0.8114(2)	1.0330(4)	0.4899(3)	This work
Mg**	$MgAlB_{14}$	0.5848(1)	0.8112(1)	1.0312(1)	0.4892(1)	[7]

Li*: Li₂B₄O₇, Mg**: Mg metal

The values of Vickers microhardness of the crystals are listed in Table.3. The values of Vickers microhardness are in the ranges of 20.2(0.5) to 28.6(0.4) GPa for LiAlB $_{14}$, and 25.5(0.5) GPa for MgAlB $_{14}$, respectively. The values measured on $\{100\}$, $\{010\}$ and $\{001\}$ faces of the LiAlB $_{14}$ crystals are in comparatively good agreement with the values of these faces for MgAlB $_{14}$. Also, this anisotropic nature of hardness seems to be related to the difference in the number of B $_{12}$ icosahedra units and B-B bonds for linkage of boron atoms in the structures.

Table 3 Vickers microhardness of LEAlB $_{14}$ (LE = Li or Mg) crystals.

Metal salts	Compounds	Indentation planes	Hardness (GPa)	References
LiF	LiAlB ₁₄	{100}	20.2(0.5)	This work
LiF	$LiAlB_{14}$	{010}	25.5(0.3)	This work
LiF	$LiAlB_{14}$	{001}	28.6(0.4)	This work
MgF_2	$MgAlB_{14}$	{010}	25.5(0.5)	This work

The oxidation process of LiAlB $_{14}$ and MgAlB $_{14}$ crystals were studied at temperatures below 1473 K by TG-DTA analyses, and results are shown in Fig. 4. The oxidation of LiAlB $_{14}$ and MgAlB $_{14}$ crystals starts at approximately 1058 and 920 K, respectively. The weight gain of the samples after TG determination are 41 mass% for LiAlB $_{14}$ and 17 mass% for MgAlB $_{14}$, respectively. The final oxidation products, as analyzed by powder XRD, were Li $_2$ B $_2$ O $_4$, Al $_8$ B $_2$ O $_{15}$, Al $_4$ B $_2$ O $_9$ and B $_2$ O $_3$, and so the exothermic peaks (for LiAlB $_{14}$, 1229 K; for MgAlB $_{14}$, 1327 and 1419 K) are attributed to oxidation products.

Lately interesting magnetic behavior has been observed in B_{12} icosahedra compounds like REB_{50} (RE = rare earth) and $TbB_{25}[9].$ It was indicated that the magnetic interaction is mediated by the B_{12} icosahedra[9], which is a completely new phenomena in boride compounds. Although there are no atoms with large magnetic spin among the LiAlB $_{14}$ and MgAlB $_{14}$ samples, it is important to characterize the magnetic properties of these new B_{12} compounds, of which LEAlB $_{14}$ has a structure similar to $TbB_{25},$ since the properties have been completely unknown to date. The temperature dependence of the magnetic susceptibility was measured down to 2 K, and the results of LiAlB $_{14}$ and MgAlB $_{14}$ are shown in Fig. 5 and 6. Neither LiAlB $_{14}$ nor MgAlB $_{14}$ exhibited superconductivity down to 2 K. The susceptibility measurements of LiAlB $_{14}$ are diamagnetic (-4.4×10 $^{-7}$ emu·g $^{-1}$ at 300 K), and show an increase at

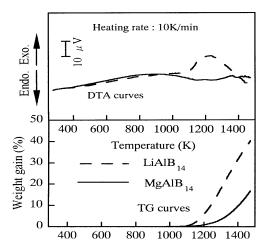


Fig.4 TG-DTA curves for LiAIB₁₄ and MgAIB₁₄.

low temperatures indicative of the paramagnetic contribution. The susceptibility of the MgAlB₁₄ does not show any particular features, with an increase at low temperatures indicative of a paramagnetic contribution, which is likely due to impurities or defects[10] below the detection level of our XRD measurements. We note that the paramagnetic contribution is much larger for MgAlB₁₄ compared to LiAlB₁₄. Since the purity of the starting materials for both compounds is similar, this could indicate that it is easier for defects

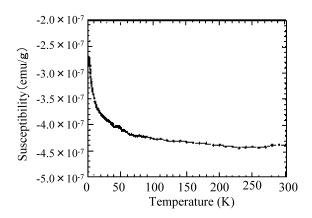


Fig.5 Temperature dependence of the magnetic susceptibility of LiAlB $_{14}$.

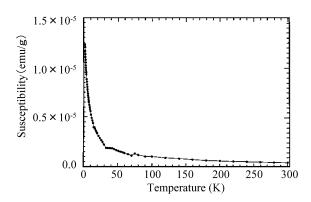


Fig.6 Temperature dependence of the magnetic susceptibility of MgAIB₁₄.

to be formed in MgAlB₁₄ which has a larger size of the alkali metal.

4. Conclusions

Single crystals of LEAlB₁₄ (LE = Li, Mg) were grown from metal salts (Li₂CO₃, LiF, LiI, MgO, MgF₂, MgI₂) and crystalline boron as starting materials in Al self-flux under an Ar atmosphere. LiAlB₁₄ and MgAlB₁₄ crystals from the Al-self flux using metal salts could be obtained from all the different salts. The present study is the first to successfully utilize metal salts as starting materials for the crystal growth of higher borides. The maximum dimensions of LiAlB₁₄ and MgAlB₁₄ crystals were approximately 18 mm and 12 mm for the crystals obtained from LiF and MgF₂. But the LEAlB₁₄ crystals prepared at the other metal salts (Li₂CO₃, LiI, MgO, MgI₂) were smaller, and not always sufficiently large for some property measurements. The MgAlB₁₄ and LiAlB₁₄ crystals obtained have well-developed {001} and {010} faces, and were black (for MgAlB₁₄) and reddish black (for LiAlB₁₄) with metallic luster. The unit-cell parameters of these compounds are in relatively good agreement with data published previously. The values of Vickers microhardness are in the ranges of 20.2(0.5) to 28.6(0.4) GPa for LiAlB₁₄, and 25.5(0.5) GPa for MgAlB₁₄, respectively. The TG curves show that the oxidation of LiAlB₁₄ and MgAlB₁₄ crystals starts at approximately 1058 and 920 K, respectively. The susceptibility of LiAlB₁₄ is diamagnetic (-4.4 \times 10⁻⁷ emu·g⁻¹ at 300 K), and MgAlB₁₄ does not show any particular features, with the increase at low temperatures indicative of paramagnetic contributions.

Acknowledgements

The authors are indebted to Miss A. Nomura, Messrs. T. Sugawara and K. Obara of IMR in Tohoku University for their technical contributions.

References

- 1) Ed. by V. I. Matkovich, *Boron and Refractory Borides*, Spring-Verlag, New York **1977**, pp.78-438.
- D. Emin et al. ed., Boron-Rich Solids, AIP Conference Proceedings 231, Am. Inst. Phys. New York 1986, pp.78-438.
- 3) I. Higashi, M. Kobayashi, S. Okada, K. Hamano, T. Lundström, *J. Cryst. Growth*, **1993**, *128*, 1113.
- K. Kudou, S. Okada, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, I. Higashi, K. Nakajima, P. Rogl, T. Lundström, *Jpn. J. Appl. Phys.*, 2002, 41, L928.
- 5) S. Okada, K. Kudou, T. Tanaka, T. Shishido, V. N. Gurin, T. Lundström, *J. Solid State Chem.*, **2004**, *177*, 547.
- 6) I. Higashi, T. Ito, *J. Less-Common Met.*, **1983**, *92*, 239.
- S. Okada, K. Kudou, T. Mori, T. Shishido, I. Higashi, N. Kamegashira, K. Nakajima, T. Lundström, *Materials Science Forum*, 2004, 449-452, 365.
- 8) Ed. by D. R. Lide, *CRC Handbook of Chemistry and Physics* 76th Ed. 1995-1996, CRC press, New York **1996**, pp.12-14.
- 9) T. Mori, H. Mamiya, *Phys. Rev. B*, **2003**, *68*, 214422.
- 10) T. Mori, A. Leither-Jasper, Phys. Rev. B, 2002, 66, 214419.