Original Paper

Crystal Growth and Some Properties of α -REAlB₄ Type (RE = Ho, Er, Tm, Yb and Lu) Compounds

Shigeru OKADA^{1,*}, Takao MORI², Kunio KUDOU³, Kunio YUBUTA⁴, Toetsu SHISHIDO⁴

¹Faculty of Science and Engineering, Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515

²International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044

³Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686

⁴Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-0812

Received March 26, 2012; E-mail: sokada@kokushikan.ac.jp

The crystals of α -REAlB₄ type (orthorhombic, *Pham*) (RE = Ho, Er, Tm, Yb and Lu) compounds were grown from the RE-Al-B system using a molten Al-self flux kept at 1873 K for 5 h under an argon atmosphere. The as-grown α -REAlB₄ type crystals were subjected to phase analysis and measurements of lattice parameters. The present study of the new compound HoAlB₄ is the first crystal growth study. The α -REAlB₄ crystals were obtained in the form of plate- or needle-like prisms and were having a grayish color. The micro-Vickers hardness values of α -REAlB₄ crystals were in the range of 16.8-18.5 GPa. The magnetic susceptibility of powder crystalline samples of α -YbAlB₄, α -ErAlB₄ and α -HoAlB₄ were measured using a SQUID magnetometer. Antiferromagnetic transitions were observed for α -HoAlB₄ and α -ErAlB₄ crystals at $T_N = 4.5$ K and $T_N = 5.0$ K, respectively. The magnetic susceptibility of our powdered α -YbAlB₄ crystals showed a larger low temperature paramagnetic tail compared to previous reports, and may be due to defects.

Key Words: a-REAlB₄ Type Compounds, Lattice Parameter, Micro-Vickers Hardness, Magnetic Susceptibility

1. Introduction

In the ternary RE-Al-B systems (RE = rare earth), four main types of ternary crystal structures have been reported, namely the YCrB₄ type (so-called α -REAlB₄ type, orthorhombic, space group: *Pbam*)[1-3], the ThMoB₄ type (β -REAlB₄ type, orthorhombic, space group: Cmmm)[4], the Y₂ReB₆ type (Yb₂AlB₆, orthorhombic, space group: *Pbam*)[1,3] and the MgAlB₁₄ type (REAlB₁₄ with RE = Tb, Dy, Ho, Er, orthorhombic, space group: Imma)[5]. Recently, in the ternary Tm-Al-B system, the $\beta\text{-TmAlB}_4$ compound[6] and Tm₂AlB₆ compound[7] were reported to be synthesized for the first time, and exhibited interesting magnetic properties. The crystal structure of the YCrB₄-type (and the ThMoB₄-type) has an analogy to that of the AlB₂ type compounds and also the REB₄ type compounds with three bonded boron atoms forming a network of planar five- and seven-membered rings to accommodate the differently sized rare earth and aluminum atoms in between the boron planes. The crystal structures of the α -REAlB₄ and β -TmAlB₄ compounds were shown in Fig.1 and Fig.2 (Small and medium sized circles, respectively, indicate boron and aluminum atoms. Filled large circles indicate the RE atoms). α-TmAlB₄ exhibits an antiferromagnetic transition at $T_N = 5.8$ K[8] and showed interesting additional anomalies indicated to originate from building defects[9]. The hardness values of TmAlB₄, YbAlB₄ and LuAlB₄ crystals of YCrB₄ type compound were in the range of 14.0(0.6)-14.5(1.4) GPa[3]. However, there is still relatively little systematic information about the physical and chemical properties of the rare earth series of α -REAlB₄ type compound. In this work, we report the experimental conditions for growing relatively large crystals of α -REAlB₄ (RE = Ho, Er, Tm, Yb and Lu) from rare earth metals (Ho, Er, Tm, Yb and Lu) and boron powders as starting materials using Al-self flux. The present study of the new compound HoAlB₄ is the first crystal growth study. The morphology and crystallographic data of the a-REAlB₄ crystals were determined and also micro-Vickers hardness at room

Fig.1 The crystal structure of the α -REAIB₄.

Fig.2 The crystal structure of the β -TmAlB₄.

2. Experiment

The reagents used to prepare the samples were rare earth metals (Ho, Er, Tm, Yb and Lu) (purity 99-99.9 %), crystalline boron (purity 99 %) and Al metal chips (purity 99.99 %). The growth conditions for REAIB₄ were established using the starting mixtures of the atomic ratio n = B/RE = 4.0. Al metal was added to each mixture at mass ratio of 1:15-20. The crucible was inserted in a vertical electric furnace with a SiC heater, and heated in an argon atmosphere. The mixture was heated at a rate of 300 K \cdot h⁻¹ and kept at 1873 K for 5 h. The solution was cooled to 1273 K at a rate of 50 $K \cdot h^{-1}$ and then the furnace was switched off. The crystals were removed from the solidified melt by dissolving the matrix in 6 mol hydrochloric acid. Phase analyses and determination of lattice parameters were carried out using a powder X-ray diffractometer (XRD) (Rigaku Co., RINT-2000) with monochromated Cu Ka radiation. The chemical compositions and impurities of the grown crystals were evaluated by means of energy dispersive spectroscopy (EDS) (KEYENCE Co., PV-7750/75ME). The morphology and size of the as-grown crystals were examined in a stereomicroscope and a scanning electron microscope (SEM) (KEYENCE Co., VE-7800). Measurements on the as-grown a- $REAlB_4$ (RE = Ho, Er, Tm, Yb and Lu) crystals were done using a Vickers diamond indenter at room temperature. A load of 1.96 N was applied for 15 s at about five positions on relatively large faces of each crystal. The magnetic susceptibility of powdered samples of α -YbAlB₄, α -ErAlB₄, and α -HoAlB₄ crystals were measured in a magnetic field of 100 mT using a superconducting quantum interference device (SQUID) magnetometer in the temperature range of 300 K to 1.8 K.

3. Results and Discussion

The crystals of α -REAlB₄ type compound were grown from the high-temperature solution Al-self flux in an argon atmosphere. Figure 3 shows XRD patterns of α -REAlB₄ type crystals. Almost all diffraction peaks of the obtained α -REAlB₄ crystals are fitted to the space group *Pbam* which is as same as that of YCrB₄ type structure. However, it should be noted that α -REAlB₄ crystals were

Fig.3 The XRD patterns of α -REAlB₄ type compounds.

obtained together with tetraborides REB₄ or hexaborides REB₆ or Lu_2AlB_6 crystals in the case of the lutetium sample. α -REAlB₄ crystals were selected from the other borides by using a stereomicroscope. At the same time, crystals of REB₂, Tm₂AlB₆, α-AlB₁₂, γ-AlB₁₂, REB₁₂, TmAlB₁₄ and REB₆₆ were not detected by powder XRD. a-REAlB4 crystals were obtained in the form of plate- or needle-like prisms and were having a gravish color. Figure 4 indicated SEM photographs of HoAlB₄ and ErAlB₄ crystals. The crystals have maximum dimensions of approximately 4.5 mm. A well characterized ternary metal boride Ho-Al-B compound has so far not been reported. The diffraction data for α -HoAlB₄ are very similar to those reported for α -TmAlB₄ {a = 0.59175(6) nm, b =1.1472(1) nm, c = 0.34773(3) nm}[2], α -YbAlB₄ {a = 0.5919(1)nm, b = 1.1465(2) nm, c = 0.3492(1) nm}[3] and α -LuAlB₄ {a =0.5906(2) nm, b = 1.144(1) nm, c = 0.3480(1) nm}[1]. The results of determination of the lattice parameters for as-grown α-REAlB₄ crystals are listed in Table 1 together with the reference values.

Fig.4 SEM photographs of HoAlB₄ and ErAlB₄ crystals.

The micro-Vickers hardness for crystals of α-REAlB₄ type was measured in several directions on the {100} or {001} faces. The hardness values of α-REAlB4 crystals for the holmium and erbium phases were in the range of 16.8-18.5 GPa. These values are in relatively good agreement with the values published in the literature {TmAlB₄: 14.5(1.4) GPa, YbAlB₄: 14.2(1.4) GPa, LuAlB₄: 14.0(0.6) GPa}[2,3]. However, despite the error bar, we can conclude that there appears to be a trend that the α -REAlB₄ holmium and erbium crystals have higher hardness values than the thulium, ytterbium, and lutetium crystals. The hardness values of α-REAlB₄ crystals were relatively lower than the value of REB₄ (HoB₄: 23.3 GPa, ErB₄: 24.9 GPa, TmB₄: 20.9 GPa, YbB₄: 22.3 GPa, LuB₄: 19.2 GPa), REB₆ (YbB₆: 21.9 GPa) and dodecaborides REB12 (HoB12: 26.5 GPa, ErB12: 27.5 GPa, TmB12: 29.4 GPa, YbB₁₂: 32.4 GPa, LuB₁₂: 28.4 GPa)[10,11]. This nature of hardness seems to be related in the difference for latter compounds which have boron clusters of octahedron B4 or B6 and cubo-octahedron B₁₂ built up by linkage of boron-boron atoms, compared to the alternating boron and metal 2D atomic sheets of the α -REAlB₄ compounds. Investigation into the magnetism of rare earth borides like REB₄, REB₆, and REB₁₂ has yielded interesting results over the years[12-14]. Striking magnetic behavior has also been observed in boron-richer borides which contain the B₁₂ icosahedra as a structural building block. A wide variation of magnetism has been discovered ranging from one-dimensional dimer-like magnetic transitions in REB₅₀ and REB₄₄Si₂[15], two-dimensional spin-glass behavior in REB₁₇CN, REB₂₂C₂N, and REB_{28.5}C₄[16] to three-dimensional long-range order in GdB₁₈Si₅. Although these are magnetically dilute *f*-electron insulators, surprisingly strong magnetic coupling has been observed (e.g., $T_{\rm N}$ = 17 K for TbB₅₀[15], peak of ZFC susceptibility $T_f = 29$ K for HoB₁₇CN[16]).

Compounds	Structure	Lattice parameters / nm			Dof
	Туре	а	b	С	Kel.
α -HoAlB ₄	YCrB ₄	0.5931(4)	1.1485(6)	0.3481(4)	This work
α -ErAlB ₄	YCrB ₄	0.5918(3)	1.1457(4)	0.3477(6)	This work
α -TmAlB ₄		0.5889(4)	1.1401(9)	0.3441(7)	This work
	$YCrB_4(\alpha$ -phase)	0.5918(1)	1.1472(1)	0.3477(1)	[2]
	YCrB ₄	0.59225(2)	1.14784(5)	0.35224(2)	[9]
	ThMoB ₄ (β -phase)	0.72795(6)	0.93248(8)	0.37981(3)	[17]
α -YbAlB ₄	YCrB ₄	0.5915(4)	1.1455(6)	0.3468(6)	This work
		0.5927(2)	1.147(1)	0.3492(1)	[1]
		0.5919(1)	1.1465(2)	0.3492(1)	[2]
α-LuAlB ₄	YCrB ₄	0.5889(6)	1.1418(8)	0.3442(9)	This work
		0.5906(2)	1.144(1)	0.3480(1)	[1]
		0.5898(1)	1.1440(1)	0.3485(1)	[2]

Table 1 Lattice parameters of as-grown α -REAIB₄ crystals.

The rare earth metal aluminoboride system REAlB₄ has also been attracting increasing attention with recent discoveries. Multiple magnetic transitions were reported to occur at low temperatures below the antiferromagnetic transition temperature T_N in the YCrB₄ type structure compound TmAlB₄[8]. The origin of this behavior was discovered to be due to an intrinsic tiling variation (building defects) in the crystals[9]. This tiling variation is indicated to occur due to the presence of the closely related ThMoB₄ type structure described above. The existence of building defects has been directly observed by TEM[17]. The difference between the YCrB₄ type and ThMoB₄ type structures is in the orientation of the pairs of condensed pentagonal rings, i.e., tiling. In this work, we have measured the magnetic susceptibility of powder crystalline samples of α -YbAlB₄, α -ErAlB₄ and α -HoAlB₄. The results obtained for α -HoAlB₄ and α -ErAlB₄ are plotted in Fig.5. As can be seen, an

antiferromagnetic transition is observed at $T_{\rm N} = 4.5$ K and $T_{\rm N} = 5.0$ K for α -HoAlB₄ and α -ErAlB₄, respectively. The difference in the magnitude of the magnetic susceptibility of α -HoAlB₄ and α -ErAlB₄ is due to the difference in magnitude of the magnetic moments of holmium and erbium ions. Previously the magnetism of β -ErAlB₄[18] was investigated and an antiferromagnetic transition was observed at $T_{\rm N} = 4.3$ K which is a little lower than that observed for α -ErAlB₄ here. This trend is interesting since it was found for the thulium phase that the β -phase has a significantly (60 %) higher transition temperature than the α -phase[6]. This magnetic behavior will be investigated in more detail in other works. The magnetic susceptibility of powder crystalline α -YbAlB₄ is shown in Fig.6. Magnetic transitions are not observed and the results are consistent with the results previously obtained for a single crystalline sample[19]. However, we note that our low

Fig.5 Magnetic susceptibility of α -ErAlB₄ and α -HoAlB₄ crystals.

temperature tail is larger which can be explained by an increase in defects in our sample compared to the single crystal sample. The magnitude of the magnetic susceptibility of α -YbAlB₄ is very small compared to the holmium and erbium phases and it is indicated there is valence instability of ytterbium.

4. Conclusions

The crystals of α -REAlB₄ type (orthorhombic, *Pbam*) (RE = Ho, Er, Tm, Yb and Lu) compounds were grown by the RE-Al-B system using a molten Al-self flux kept at 1873 K for 5 h under an argon atmosphere. The α -REAlB₄ crystals were obtained together with REB₄ or REB₆ or Lu₂AlB₆ crystals. The present study of the new compound HoAlB₄ is the first crystal growth study. The morphology and crystallographic data of the crystals were determined, and micro-Vickers hardness at room temperature and magnetic susceptibility from 300 K to 1.8 K were measured. The results are as follows.

- (1) α -REAlB₄ crystals were obtained in the form of plate- or needle-like prisms and were having grayish color. The crystals have maximum dimensions of approximately 4.5 mm.
- (2) The hardness values of α-REAlB₄ crystals for Ho and Er phases were in the range of 16.8-18.5 GPa, which is larger than that of 13.4-15.9 GPa for Tm, Yb, and Lu phases.
- (3) The magnetic susceptibility of α -HoAlB₄ and α -ErAlB₄ are observed for antiferromagnetic transition at $T_N = 4.5$ K and $T_N = 5.0$ K, respectively. The magnetic susceptibility of α -YbAlB₄ has a low temperature tail larger than that previous observed for single crystal samples which can be due to a larger number of defects in our α -YbAlB₄ samples.

References

- S. I. Mikhalenko, Yu. B. Kuz'ma, M. M. Korsukova, V. N. Gurin, *Inorg. Mater.*, **1980**, *16*, 1325.
- 2) S. Okada, K. Kudou, Y. Yu, T. Lundström, Jpn. J. Appl.

Phys., **1994**, *33*, 2663.

- S. Okada, T. Shishido, T. Mori, K. Kudou, K. Iizumi, K. Nakajima, J. Flux Growth, 2007, 2, 83.
- 4) P. Rogl, H. Nowotny, Monatsh. Chem., 1974, 105, 1082.
- 5) M. M. Korsukova, T. Lundström, L.-E. Tergenius, V. N. Gurin, J. Alloys Compds., 1992, 187, 39.
- T. Mori, T. Shishido, K. Yubuta, K. Nakajima, A. Leithe-Jasper, Y. Grin, J. Appl. Phys., 2010, 107, 09E112.
- 7) T. Mori, T. Shishido, K. Nakajima, K. Kieffer, K. Siemensmeyer, J. Appl. Phys., 2009, 105, 07E124.
- 8) T. Mori, S. Okada, K. Kudou, J. Appl. Phys., 2005, 97, 10A910.
- 9) T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, Y. Grin, *Phys. Rev. B*, **2007**, *76*, 064404.
- K. Takagi, T. Shishido, T. Mori, S. Okada et al., Fundamentals and Applications of Boron, Borides and Related Materials, CMC, 2008, p.56.
- 11) G. V. Samsonov, I. M. Vinitskii, *Handbook of Refractory Compounds*, Spring-Verlag, New York, **1977**, p.152.
- 12) B. T. Matthias, T. H. Geballe, K. Andres, E. Corenzwit, G. W. Hull, J. P. Maita, *Science*, **1968**, *159*, 530.
- D. Gignoux, D. Schmitt, *Handbook of Magnetic Materials*, *Vol.10*, Ed. by K. H. J. Buschow, Elsevier, Amsterdam, **1997**, p.239.
- 14) T. Mori, Handbook on the Physics and Chemistry of Rare-Earths, Vol. 38, Ed. by K. A. Gschneidner Jr., J.-C. Bunzli, V. Pecharsky, Elsevier, Amsterdam, 2008, p.105.
- 15) T. Mori, T. Tanaka, J. Phys. Soc. Jpn., 1999, 68, 2033.
- 16) T. Mori, H. Mamiya, Phys. Rev. B, 2003, 68, 214422.
- K. Yubuta, T. Mori, A. Leithe-Jasper, Y. Grin, S. Okada, T. Shishido, *Mater. Res. Bull.*, 2009, 44, 1743.
- 18) T. Mori, R. Cardoso-Gil, A. Leithe-Jasper, W. Schnelle, H. Borrmann, Y. Grin, J. Appl. Phys., 2008, 103, 07B730.
- 19) R. T. Macaluso, S. Nakatsuji, K. Kuga, E. L. Thomas, Y. Machida, Y. Maeno, Z. Fisk, J. Y. Chan, *Chem. Mater.*, 2007, 19, 1918.